Approximate Inference in Practice
Microsoft’s Xbox TrueSkill™

Daniel Hernández-Lobato

Universidad Autónoma de Madrid

2014
Outline

1. Introduction
2. The Probabilistic Model
3. Approximate Inference
4. Results
Outline

1 Introduction

2 The Probabilistic Model

3 Approximate Inference

4 Results
Introduction

- **Competition is a key aspect of humans.**
 - Innate in most persons since a young age.
 - Used as a principle in most sports: soccer, basketball, etc.
- **Ratings used in games for fair competition.**
 - ELO system: Estimates the skill level of a chess player.
 - ATP system: Estimates the skill level of a tennis player.
 - Used for matchmaking in tournaments.
 - Generate a players ranking.
- **Online gaming poses additional challenges.**
 - Infer from a few match outcomes player skills.
 - Consider the possibility of teams with different number of players.
Questions that Arise in Online Gaming Skill Rating

- **Observed data:** Match outcomes of k teams with n_1, \ldots, n_k players each, in the form of a ranking with potential ties between teams.

- **Information we would like to obtain:**
 - Skills of each player s_1, \ldots, s_k.
 - If $s_i > s_j$ player i is expected to beat player j.
 - Global ranking among players.
 - Fair matches between players and teams of players.

Successfully achieved by Microsoft’s Xbox TrueSkill™

Outline

1. Introduction
2. The Probabilistic Model
3. Approximate Inference
4. Results
TrueSkill™ Observed and Latent Variables

Latent Variables:
- **Skill** s_i for player i: $p(s_i) = \mathcal{N}(s_i|\mu_i, \sigma_i^2)$.
- **Performance** p_i of player i: $p(p_i|s_i) = \mathcal{N}(p_i|s_i, \beta^2)$.
- **Performance** t_j of team j: $p(t_j|\{p_i: i \in A_j\}) = \delta(t_j - \sum_{i \in A_j} p_i)$.

Observed Variables:
- **Match outcome involving** k teams: Rank r_j for each team j.

$$p(r_1, \ldots, r_k|t_1, \ldots, t_k) = \mathbb{I}(t_{r_1} > t_{r_2} > \cdots > t_{r_k})$$

Thus, $r_j < r_{j+1}$ implies $t_j > t_{j+1}$.

The parameters of the model are β^2, μ_i and σ_i^2.
We consider a game with 3 teams $A_1 = \{1\}$, $A_2 = \{2, 3\}$, $A_3 = \{4\}$.

Results: $r = (1, 2, 3)$. Team A_1 wins followed by A_2 and A_3.

Define $d_1 = t_1 - t_2$ and $d_2 = t_2 - t_3$:

$$p(d_1|t_1, t_2) = \delta(d_1 - t_1 + t_2), \quad p(d_2|t_2, t_3) = \delta(d_2 - t_2 + t_3).$$

The result implies $d_1 > 0$ and $d_2 > 0$. **Use transitivity!**

Thus, $r = (1, 2, 3)$ is equivalent to observing $b_1 = 1$ and $b_2 = 1$ where:

\[
p(b_1|d_1) = \begin{cases}
1 & \text{if } d_1 > 0, \\
0 & \text{if } d_1 \leq 0.
\end{cases} \quad p(b_2|d_2) = \begin{cases}
1 & \text{if } d_2 > 0, \\
0 & \text{if } d_2 \leq 0.
\end{cases}
\]
Note that we observe $b_1 = 1$ and $b_2 = 1$.
Inference involves computing a posterior given a match outcome:

\[p(s, p, t, d, | b) = \frac{p(s, b, t, p, d)}{p(b)} = \frac{p(b|d)p(d|t)p(t|p)p(p|s)p(s)}{p(b)} \]

We marginalize out \(t \) and \(p \) and \(d \) to get the marginal posterior of \(s \).

Bayesian Online Learning

The posterior after one match is used as the prior for the next match.

\[\{\mu_i(0), \sigma_i^2(0)\} \xrightarrow{\text{Match #1}} \{\mu_i(1), \sigma_i^2(1)\} \xrightarrow{\text{Match #2}} \{\mu_i(2), \sigma_i^2(2)\} \]

Marginal Posterior is not Gaussian!
Outline

1 Introduction

2 The Probabilistic Model

3 Approximate Inference

4 Results
Message Passing Algorithm

We pass messages in the Bethe cluster graph until convergence to compute the posterior marginals of s_1, \ldots, s_4.

$$
\delta_{i \rightarrow j}(s_{i,j}) = \left\{ \int \psi_i(c_i) \left[\prod_{k \in \text{Nb}_i} \delta_{k \rightarrow i}(s_{k,i}) \right] d(c_i \setminus s_{i,j}) \right\} / \delta_{j \rightarrow i}(s_{i,j}).
$$

where $s_{i,j}$ are the variables in the sepset of edge $i \rightarrow j$. This is the same rule as the one used in Belief Propagation.

The posterior marginals for s_1, \ldots, s_4 are given:

$$
p(s_i|b) \propto \psi_i(s_i) \prod_{k \in \text{Nb}_i} \delta_{k \rightarrow i}(s_i) = \mathcal{N}(s_i|\mu_i, \sigma_i^2) \delta_{k \rightarrow i}(s_i).
$$

All messages are Gaussian except for the two bottom messages!
Bethe Cluster Graph: Message Passing

\[N(s_1|\mu_1, \sigma_1^2) \]

\[s_1 \]

\[N(p_1|s_1, \beta^2) \]

\[p_1 \]

\[\delta(t_1 - p_1) \]

\[t_1 \]

\[\delta(d_1 - t_1 + t_2) \]

\[d_1 \]

\[\mathbb{I}(d_1 > 0) \]

\[N(s_2|\mu_2, \sigma_2^2) \]

\[s_2 \]

\[N(p_2|s_2, \beta^2) \]

\[p_2 \]

\[\delta(t_2 - p_2 - p_3) \]

\[t_2 \]

\[\delta(d_2 - t_2 + t_3) \]

\[d_2 \]

\[\mathbb{I}(d_2 > 0) \]

\[N(s_3|\mu_3, \sigma_3^2) \]

\[s_3 \]

\[N(p_3|s_3, \beta^2) \]

\[p_3 \]

\[\delta(t_3 - p_4) \]

\[t_3 \]

\[N(s_4|\mu_4, \sigma_4^2) \]

\[s_4 \]

\[N(p_4|s_4, \beta^2) \]

\[p_4 \]

\[\delta(t_4) \]
Bethe Cluster Graph: Message Passing
Approximate Messages: Projection Step

We consider the case of the first message. The first step is to approximate the marginal by projecting into the Gaussian family:

$$\psi_i(d_1)\delta_{j \rightarrow i}(d_1) = \mathbb{I}(d_1 > 0) \mathcal{N}(d_1 | \hat{m}, \hat{\nu}).$$

For this, we compute the log of the normalization constant:

$$\log Z = \log \int \mathbb{I}(d_1 > 0) \mathcal{N}(d_1 | \hat{m}, \hat{\nu}) dd_1 = \log \Phi \left(\frac{\hat{m}}{\sqrt{\hat{\nu}}} \right).$$

We can obtain the mean and the variance of $\mathbb{I}(d_1 > 0) \mathcal{N}(d_1 | \hat{m}, \hat{\nu})$ by computing the derivatives with respect to \hat{m} and $\hat{\nu}$!

Assume m and ν are the mean and the variance. The approximate message is then:

$$\delta_{i \rightarrow j}(d_1) \propto \frac{\mathcal{N}(d_1 | m, \nu)}{\mathcal{N}(d_1 | \hat{m}, \hat{\nu})}.$$

The computation of the other approximate message is equivalent.
Convergence Speed

![Convergence Speed Graph](image)

- **Level** vs **Number of Games**
- **char (TrueSkill™)**
- **SQLWildman (TrueSkill™)**
- **char (Halo 2 rank)**
- **SQLWildman (Halo 2 rank)**

Legend:
- Red solid line: char (TrueSkill™)
- Blue solid line: SQLWildman (TrueSkill™)
- Red dashed line: char (Halo 2 rank)
- Blue dashed line: SQLWildman (Halo 2 rank)
Applications to Online Gaming

- **Leader-board of players:**
 - Provides a global ranking of all players.
 - The rank is conservative: $\mu_i - 3\sigma_i$.

- **Matchmaking:**
 - For players: Most uncertain outcome is better.
 - For inference: Most uncertain outcome is most informative.
 - Good for both players and the model.
Matchmaking: Probability of winning or loosing

We assume player i wants to play against player j. What is the probability of winning?

$$p(p_i > p_j) = \int \mathbb{I}(p_i - p_j > 0) p(p_j | s_j) p(s_j) p(p_i | s_i) p(s_i) dp_i dp_j ds_i ds_j$$

$$= \int \mathbb{I}(p_i - p_j > 0) \mathcal{N}(p_j | s_j, \beta^2) \mathcal{N}(p_i | s_i, \beta^2) \cdot \mathcal{N}(s_j | \mu_j, \sigma_j^2) \mathcal{N}(s_i | \mu_i, \sigma_i^2) dp_i dp_j ds_i ds_j$$

$$= \int \mathbb{I}(p_i - p_j > 0) \mathcal{N}(p_j | \mu_j, \sigma_j^2 + \beta^2) \mathcal{N}(p_i | \mu_i, \sigma_i^2 + \beta^2) dp_i dp_j$$

$$= \Phi \left(\frac{\mu_i - \mu_j}{\sqrt{\sigma_i^2 + \sigma_j^2 + 2\beta^2}} \right).$$
Game Over!