A tutorial on Bayesian Optimization

Daniel Hernández–Lobato
Computer Science Department
Universidad Autónoma de Madrid

http://dhnzl.org, daniel.hernandez@uam.es
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.!
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.!
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.!

- Many choices at each step.
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.!

- Many choices at each step.
- Complicated and high dimensional.
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.!

- Many choices at each step.
- Complicated and high dimensional.
- Difficult for individuals to reason about.
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.!

- Many choices at each step.
- Complicated and high dimensional.
- Difficult for individuals to reason about.
- Prone to human bias.
Challenges in Engineering Design

The society demands new products of better quality, functionality, usability, etc.

- Many choices at each step.
- Complicated and high dimensional.
- Difficult for individuals to reason about.
- Prone to human bias.

Optimization is a challenging task in new products design!
Example: **Deep Neural Network** for object recognition.
Example: **Deep Neural Network** for object recognition.

Parameters to tune: Number of neurons, number of layers, learning-rate, level of regularization, momentum, etc.
Example: new **plastic solar cells** for transforming light into electricity.
Example: new **plastic solar cells** for transforming light into electricity.

Explore **millions of candidate molecule structures** to identify the compounds with the best properties.
Example: control system for a robot that is able to grasp objects.
Example: **control system** for a robot that is able to grasp objects.

Parameters to tune: initial pose for the robot’s hand and finger joint trajectories.
Optimization Problems: Common Features

- Very expensive evaluations.
Optimization Problems: Common Features

- Very expensive evaluations.
- The objective is a black-box.
Optimization Problems: Common Features

- Very expensive evaluations.
- The objective is a black-box.
- The evaluation can be noisy.

Bayesian optimization methods can be used to solve these problems!
Optimization Problems: Common Features

- Very expensive evaluations.
- The objective is a black-box.
- The evaluation can be noisy.

Bayesian optimization methods can be used to solve these problems!
Bayesian Optimization in Practice

1. Get initial sample.

The model guides the search focusing on the most-promising regions of the input space!
Bayesian Optimization in Practice

1. Get initial sample.

The model guides the search focusing on the most-promising regions of the input space!
Bayesian Optimization in Practice

1 Get initial sample.
2 Fit a model to the data:
 \[p(y|x, \mathcal{D}_n) \].
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n). \]
Bayesian Optimization in Practice

1. Get initial sample.
2. **Fit a model to the data:**
 \[p(y|x, D_n) \].
3. **Select data collection strategy:**
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)] \].
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) \, . \]
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)] \, . \]
4. Optimize acquisition function \(\alpha(x) \).
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) \].
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) \].
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, \mathcal{D}_n) \].
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, \mathcal{D}_n)}[U(y|x, \mathcal{D}_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, \mathcal{D}_n). \]
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, \mathcal{D}_n)}[U(y|x, \mathcal{D}_n)]. \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!

The model guides the search focusing on the most-promising regions of the input space.
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) . \]
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)] . \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n). \]
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)]. \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n). \]
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)]. \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!

The model guides the search focusing on the most-promising regions of the input space!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, \mathcal{D}_n) \].
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, \mathcal{D}_n)}[U(y|x, \mathcal{D}_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

Get initial sample.

Fit a model to the data:
\[p(y|x, \mathcal{D}_n). \]

Select data collection strategy:
\[\alpha(x) = \mathbb{E}_{p(y|x, \mathcal{D}_n)}[U(y|x, \mathcal{D}_n)]. \]

Optimize acquisition function \(\alpha(x) \).

Collect data and update model.

Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) . \]
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)] . \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!

The model guides the search focusing on the most-promising regions of the input space!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) . \]
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)] . \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n). \]
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)]. \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) \].
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) \].
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n) \].
3. Select data collection strategy:
 \[\alpha(x) = \mathbb{E}_{p(y|x, D_n)}[U(y|x, D_n)] \].
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, \mathcal{D}_n) . \]
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, \mathcal{D}_n)}[U(y|x, \mathcal{D}_n)] . \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!
Bayesian Optimization in Practice

1. Get initial sample.
2. Fit a model to the data:
 \[p(y|x, D_n). \]
3. Select data collection strategy:
 \[\alpha(x) = E_{p(y|x, D_n)}[U(y|x, D_n)]. \]
4. Optimize acquisition function \(\alpha(x) \).
5. Collect data and update model.
6. Repeat!

The model guides the search focusing on the most-promising regions of the input space!
Bayesian Optimization vs. Uniform Exploration

Tuning LDA on a collection of Wikipedia articles (Snoek et al., 2012).
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing $p(\text{Data})$ is intractable!

Solved by setting $p(W) = \prod_{ij} N(w_{ji} | 0, \sigma^2 H^{-1})$ and letting $H \to \infty$!
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing $p(\text{Data})$ is intractable!

Solved by setting $p(W) = \prod_{ij} N(w_{ji}|0, \sigma^2 H^{-1})$ and letting $H \to \infty$.

$$h_j(x) = \tanh\left(\sum_{i=1}^{I} x_i w_{ji}\right)$$

$$f(x) = \sum_{j=1}^{H} v_j h_j(x)$$
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing $p(\text{Data})$ is intractable!

Solved by setting $p(W) = \prod_{ij} N(w_{ji}|0,\sigma^2_H^{-1})$ and letting $H \to \infty$.

$$h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right)$$

$$f(x) = \sum_{j=1}^{H} v_j h_j(x)$$
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing $p(D)$ is intractable!

Solved by setting $p(W) = \prod_{ij} N(w_{ji}|0,\sigma^2 H^{-1})$ and letting $H \to \infty$!

$$h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right)$$

$$f(x) = \sum_{j=1}^{H} v_j h_j(x)$$
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing \(p(\text{Data}) \) is intractable!

Solved by setting

\[
p(W) = \prod_{ij} N(w_{ji} | 0, \sigma^2 H^{-1})
\]

and letting \(H \to \infty \! \)

\[
h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right)
\]

\[
f(x) = \sum_{j=1}^{H} v_j h_j(x)
\]

Posterior Dist.

\[
p(W|\text{Data}) = \frac{p(W)p(\text{Data}|W)}{p(\text{Data})}
\]

Predictive Dist.

\[
p(y|\text{Data}, x) = \int p(y|W, x)p(W|\text{Data})dW
\]
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing $p(\text{Data})$ is intractable!

Posterior Dist.
$p(W|\text{Data}) = \frac{p(W)p(\text{Data}|W)}{p(\text{Data})}$

Predictive Dist.
$p(y|\text{Data}, x) = \int p(y|W, x)p(W|\text{Data})dW$

$h_j(x) = \tanh\left(\sum_{i=1}^{I} x_i w_{ji}\right)$

$f(x) = \sum_{j=1}^{H} v_j h_j(x)$
Fitting a Model to the Data

Challenges: The model should be non-parametric (the world is complicated) and computing $p(Data)$ is intractable!

Solved by setting $p(W) = \prod_{ij} N(w_{ji}|0, \sigma^2 H^{-1})$ and letting $H \to \infty$!
Gaussian Processes

Distribution over functions $f(\cdot)$ so that for any finite $\{x_i\}_{i=1}^N$, $(f(x_1), \ldots, f(x_N))^T$ follows an N-dimensional Gaussian distribution.
Gaussian Processes

Distribution over functions $f(\cdot)$ so that for any finite $\{x_i\}_{i=1}^N$, $(f(x_1), \ldots, f(x_N))^T$ follows an N-dimensional Gaussian distribution.

Due to Gaussian form, there are closed-form solutions for many useful questions about finite data.
Gaussian Processes

Distribution over functions $f(\cdot)$ so that for any finite $\{x_i\}_{i=1}^N$, $(f(x_1), \ldots, f(x_N))^T$ follows an N-dimensional Gaussian distribution.

When $H \to \infty$, $(f(x_1), \ldots, f(x_N))^T$ follows an N-dimensional Gaussian where $E[f(x_i)f(x_k)] = \sigma^2 E[h_j(x_i)h_j(x_k)]$ by the central limit theorem.
Gaussian Processes

Distribution over functions $f(\cdot)$ so that for any finite $\{x_i\}_{i=1}^N$, $(f(x_1), \ldots, f(x_N))^T$ follows an N-dimensional Gaussian distribution.

When $H \to \infty$, $(f(x_1), \ldots, f(x_N))^T$ follows an N-dimensional Gaussian where $\mathbb{E}[f(x_i)f(x_k)] = \sigma^2\mathbb{E}[h_j(x_i)h_j(x_k)]$ by the central limit theorem.

Due to Gaussian form, there are closed-form solutions for many useful questions about finite data.
Gaussian Processes

- The **joint distribution** for y^* at test points $\{x^*_m\}_{m=1}^M$ and y:

$$p(y^*, y) = \mathcal{N}\left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k_\theta & K_\theta \\ K_\theta^T & \kappa_\theta \end{bmatrix}\right)$$
Gaussian Processes

- The joint distribution for y^\star at test points $\{x^\star_m\}_{m=1}^M$ and y:

$$p(y^\star, y) = \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k_\theta & K_\theta \\ \kappa_\theta & k_\theta^T \end{bmatrix} \right)$$

- These matrices are computed from the covariance $C(\cdot, \cdot; \theta)$:

$$[K_\theta]_{n,n'} = C(x_n, x_{n'}; \theta)$$

$$[k_\theta]_{n,m} = C(x_n, x^\star_m; \theta), \quad [\kappa_\theta]_{m,m'} = C(x^\star_m, x^\star_{m'}; \theta),$$
Gaussian Processes

- The **joint distribution** for \(y^* \) at test points \(\{x^*_m\}_{m=1}^M \) and \(y \):

\[
p(y^*, y) = \mathcal{N}
\begin{pmatrix}
0 \\
0 \\
\end{pmatrix}
,
\begin{bmatrix}
k_\theta & K_\theta \\
K_\theta^T & k_\theta^T
\end{bmatrix}
\]

- These **matrices** are computed from the covariance \(C(\cdot, \cdot; \theta) \):

\[
[K_\theta]_{n,n'} = C(x_n, x_{n'}; \theta) \\
[k_\theta]_{n,m} = C(x_n, x^*_m; \theta) , \quad [\kappa_\theta]_{m,m'} = C(x^*_m, x^*_m'; \theta) ,
\]

- The **predictive distribution** for \(y^* \) given \(y \), \(p(y^*|y) \), is:

\[
y^* \sim \mathcal{N}(m, \Sigma) \\
m = k_\theta^T K_\theta^{-1} y , \quad \Sigma = \kappa_\theta - k_\theta^T K_\theta^{-1} k_\theta ,
\]
Gaussian Processes

- The **joint distribution** for y^* at test points $\{x^*_m\}_{m=1}^M$ and y:

 \[
p(y^*, y) = \mathcal{N} \left(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} k_\theta & K_\theta \\ K_\theta^T & k_\theta^T \end{bmatrix} \right)
 \]

- These **matrices** are computed from the covariance $C(\cdot, \cdot; \theta)$:

 \[
 [K_\theta]_{n,n'} = C(x_n, x_{n'}; \theta) \\
 [k_\theta]_{n,m} = C(x_n, x^*_m; \theta), \quad [k_\theta]_{m,m'} = C(x^*_m, x^*_m'; \theta,
 \]

- The **predictive distribution** for y^* given y, $p(y^*|y)$, is:

 \[
y^* \sim \mathcal{N}(m, \Sigma) \\
m = k_\theta^T K_\theta^{-1} y, \quad \Sigma = \kappa_\theta - k_\theta^T K_\theta^{-1} k_\theta,
 \]

- The log of the **marginal likelihood**, $p(y|\theta)$, is:

 \[
 \log p(y) = -\frac{N}{2} \log 2\pi - \frac{1}{2} \log |K_\theta| - \frac{1}{2} y^T K_\theta^{-1} y
 \]
Some Covariance Functions

Squared Exponential

\[C(x, x') = \sigma^2 \exp \left\{ \frac{1}{2} \sum_j \left(\frac{x_j - x'_j}{l_j} \right)^2 \right\} \]
Some Covariance Functions

Squared Exponential

\[C(x, x') = \sigma^2 \exp \left\{ \frac{1}{2} \sum_j \left(\frac{x_j - x'_j}{l_j} \right)^2 \right\} \]

Matérn

\[C(x, x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l} \right)^\nu K_\nu \left(\frac{\sqrt{2\nu r}}{l} \right) \]
Some Covariance Functions

Squared Exponential

$$C(x, x') = \sigma^2 \exp \left\{ \frac{1}{2} \sum_j \left(\frac{x_j - x'_j}{l_j} \right)^2 \right\}$$

Matérn

$$C(x, x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l} \right)^\nu K_\nu \left(\frac{\sqrt{2\nu r}}{l} \right)$$

Neural Network

$$C(x, x') = \frac{2}{\pi} \sin^{-1} \left(\frac{2x^T \Sigma x'}{\sqrt{(1+2x^T \Sigma x)(1+2x^T \Sigma x')}} \right)$$
Some Covariance Functions

Squared Exponential

\[C(x, x') = \sigma^2 \exp \left\{ \frac{1}{2} \sum_j \left(\frac{x_j - x'_j}{l_j} \right)^2 \right\} \]

Matérn

\[C(x, x') = \frac{2^{1-\nu}}{\Gamma(\nu)} \left(\frac{\sqrt{2\nu r}}{l} \right)^\nu K_\nu \left(\frac{\sqrt{2\nu r}}{l} \right) \]

Neural Network

\[C(x, x') = \frac{2}{\pi} \sin^{-1}\left(\frac{2x^T \Sigma x'}{\sqrt{(1+2x^T \Sigma x)(1+2x^T \Sigma x')}} \right) \]

Periodic

\[C(x, x') = \exp \left\{ -\frac{2 \sin^2 \left(\frac{|x-x'|}{2} \right)}{l^2} \right\} \]
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Diagram showing a comparison between a predicted curve and the ground truth. The predicted curve is represented by a shaded area with a black line, and the ground truth is represented by a red line. There is an error bar showing the range of the prediction.]
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Diagram showing ground truth and a fitted curve](image)
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Diagram showing a close-form posterior distribution for $f(\cdot)$]
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Diagram showing the relationship between the prior and posterior distributions in GP regression](image.png)
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
GP regression provides a closed-form posterior distribution for $f(\cdot)$.

![Diagram showing the relationship between the prior and posterior distributions in GP regression. The red line represents the ground truth, and the black lines show different samples from the posterior distribution.](image-url)
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Diagram showing the comparison between the closed-form posterior and ground truth](image-url)
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for \(f(\cdot) \).
From the Prior to the Posterior

GP regression provides a closed-form posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Diagram showing ground truth and GP regression results]
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.

![Ground Truth](image)
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
From the Prior to the Posterior

GP regression provides a **closed-form** posterior distribution for $f(\cdot)$.
Using the GP Uncertainty in Optimization

Where to evaluate next?
Where to evaluate next?

- **Exploration**: seek places with high variance.
- **Exploitation**: seek places with low mean.

The acquisition function balances these two, to choose in an intelligent way the next evaluation point!

\[
\alpha(x) = \mathbb{E}_{p(y^\star|D_N, x)} [U(y^\star|x, D_N)]
\]
Using the GP Uncertainty in Optimization

Where to evaluate next?

- **Exploration**: seek places with high variance.
Using the GP Uncertainty in Optimization

Where to evaluate next?

- **Exploration**: seek places with high variance.
- **Exploitation**: seek places with low mean.
Using the GP Uncertainty in Optimization

Where to evaluate next?

• **Exploration**: seek places with high variance.
• **Exploitation**: seek places with low mean.

The acquisition function balances these two, to choose in an intelligent way the next evaluation point!
Using the GP Uncertainty in Optimization

Where to evaluate next?

- **Exploration**: seek places with high variance.
- **Exploitation**: seek places with low mean.

The acquisition function balances these two, to choose in an intelligent way the next evaluation point!

\[\alpha(x) = \mathbb{E}_{p(y^*|\mathcal{D}_N,x)} \left[U(y^*|x,\mathcal{D}_N) \right] \]
Some Acquisition Functions

Let $\nu = \min\{y_1, \ldots, y_N\}$ and $\gamma(x) = \frac{\nu - \mu(x)}{\sigma(x)}$.
Some Acquisition Functions

Let \(\nu = \min\{y_1, \ldots, y_N\} \) and \(\gamma(x) = \frac{\nu - \mu(x)}{\sigma(x)}. \)

- **Probability of Improvement:**
 \[
 U(y^*|D_N, x) = \mathbb{I}(y_* < \nu), \quad \alpha(x) = \Phi(\gamma(x))
 \]
Some Acquisition Functions

Let $\nu = \min\{y_1, \ldots, y_N\}$ and $\gamma(x) = \frac{\nu - \mu(x)}{\sigma(x)}$.

- **Probability of Improvement:**
 $$U(y^*|\mathcal{D}_N, x) = \mathbb{I}(y^* < \nu), \quad \alpha(x) = \Phi(\gamma(x))$$

- **Expected Improvement:**
 $$U(y^*|\mathcal{D}_N, x) = \max(0, \nu - y^*), \quad \alpha(x) = \sigma(x)(\gamma(x)\Phi(\gamma(x)) + \phi(\gamma(x)))$$
Some Acquisition Functions

Let $\nu = \min\{y_1, \ldots, y_N\}$ and $\gamma(x) = \frac{\nu - \mu(x)}{\sigma(x)}$.

- **Probability of Improvement:**

 $$U(y^*|\mathcal{D}_N, x) = \mathbb{I}(y_* < \nu), \quad \alpha(x) = \Phi(\gamma(x))$$

- **Expected Improvement:**

 $$U(y^*|\mathcal{D}_N, x) = \max(0, \nu - y^*), \quad \alpha(x) = \sigma(x) \left(\gamma(x) \Phi(\gamma(x)) + \phi(\gamma(x)) \right)$$

- **Lower Confidence Bound:**

 $$\alpha(x) = - \left(\mu(x) - \kappa \sigma(x) \right)$$
Some Acquisition Functions

Let \(\nu = \min\{y_1, \ldots, y_N\} \) and \(\gamma(x) = \frac{\nu - \mu(x)}{\sigma(x)} \).

- **Probability of Improvement:**
 \[
 U(y^*|D_N, x) = \mathbb{I}(y_+ < \nu), \quad \alpha(x) = \Phi(\gamma(x))
 \]

- **Expected Improvement:**
 \[
 U(y^*|D_N, x) = \max(0, \nu - y^*), \quad \alpha(x) = \sigma(x) (\gamma(x)\Phi(\gamma(x)) + \phi(\gamma(x)))
 \]

- **Lower Confidence Bound:**
 \[
 \alpha(x) = - (\mu(x) - \kappa\sigma(x))
 \]

- **Entropy Search:**
 \[
 U(y^*|D_N, x) = H[p(x_{\min}|D_N)] - H[p(x_{\min}|D_N \cup \{x, y^*\})]
 \]
Some Acquisition Functions:
Some Acquisition Functions: Prob. Improvement
Some Acquisition Functions: Exp. Improvement
Some Acquisition Functions: Lower Conf. Bound
Some Acquisition Functions: Entropy Search
Bayesian Optimization and Model Selection

- **Covariance function selection**: critical to achieve good performance. The default choice for regression (squared exponential) is too smooth. Matérn $\nu = 5/2$ kernel works better.
Bayesian Optimization and Model Selection

- **Covariance function selection**: critical to achieve good performance. The default choice for regression (squared exponential) is too smooth. Matérn $\nu = 5/2$ kernel works better.

Structured SVM for protein motif finding (Snoek et al., 2012).
Bayesian Optimization and Model Selection

- Hyper-parameter selection: with a small number of observations maximizing $p(y|\theta)$ can give too confident uncertainty estimates.
Hyper-parameter selection: with a small number of observations maximizing \(p(y|\theta) \) can give too confident uncertainty estimates.

Sampling the hyper-parameters: computing \(p(\theta|y) \) is intractable! Alternative: generate a few samples form \(p(\theta|y) \) using MCMC.
Bayesian Optimization and Model Selection

- **Hyper-parameter selection**: with a small number of observations maximizing $p(y|\theta)$ can give **too confident** uncertainty estimates.

- **Sampling the hyper-parameters**: computing $p(\theta|y)$ is **intractable**! Alternative: generate a few samples from $p(\theta|y)$ using MCMC.

 Slice sampling means no additional hyper-parameters!
Bayesian Optimization and Model Selection

- **Hyper-parameter selection**: with a small number of observations maximizing $p(y|\theta)$ can give too confident uncertainty estimates.

- **Sampling the hyper-parameters**: computing $p(\theta|y)$ is intractable! Alternative: generate a few samples form $p(\theta|y)$ using MCMC.

Slice sampling means no additional hyper-parameters!

(Neal, 2003)
Bayesian Optimization and Model Selection

- **Hyper-parameter selection**: with a small number of observations maximizing $p(y|\theta)$ can give **too confident** uncertainty estimates.

- **Sampling the hyper-parameters**: computing $p(\theta|y)$ is **intractable**! Alternative: generate a few samples form $p(\theta|y)$ using MCMC.

Slice sampling means no additional hyper-parameters!

(Neal, 2003)
Integrated Acquisition Function

\[\hat{\alpha}(x) = \int \alpha(x; \theta) p(\theta|y) d\theta \approx \frac{1}{K} \sum_{k=1}^{K} \alpha(x; \theta^{(k)}) \quad \theta^{(k)} \sim p(\theta|y), \]
Integrated Acquisition Function

\[\hat{\alpha}(x) = \int \alpha(x; \theta)p(\theta|y)\,d\theta \approx \frac{1}{K} \sum_{k=1}^{K} \alpha(x; \theta^{(k)}) \quad \theta^{(k)} \sim p(\theta|y), \]

(Snoek et al., 2012)
\(\hat{\alpha}(x) = \int \alpha(x; \theta)p(\theta|y)d\theta \approx \frac{1}{K} \sum_{k=1}^{K} \alpha(x; \theta^{(k)}) \quad \theta^{(k)} \sim p(\theta|y) \),

(Snoek et al., 2012)
Integrated Acquisition Function

\[\hat{\alpha}(x) = \int \alpha(x; \theta) p(\theta | y) d\theta \approx \frac{1}{K} \sum_{k=1}^{K} \alpha(x; \theta^{(k)}) \quad \theta^{(k)} \sim p(\theta | y), \]

Posterior samples with three different length-scales

Length-scale specific expected improvement

Integrated expected improvement

(Snoek et al., 2012)
MCMC estimation vs. Maximization

Logistic regression on the MNIST (Snoek et al., 2012).
Cost-sensitive Bayesian Optimization

- Different inputs may have **different computational costs**, e.g., training a neural network of increasing hidden layers and units.
Cost-sensitive Bayesian Optimization

- Different inputs may have **different computational costs**, e.g., training a neural network of increasing hidden layers and units.

- Better to do **cheap evaluations** before expensive ones!
Cost-sensitive Bayesian Optimization

- Different inputs may have **different computational costs**, *e.g.*, training a neural network of increasing hidden layers and units.

- Better to do **cheap evaluations** before expensive ones!

- The evaluation costs are **unknown** but they can be **recorded** and then **modeled** with an additional **Gaussian process**.
Cost-sensitive Bayesian Optimization

• Different inputs may have **different computational costs**, *e.g.*, training a neural network of increasing hidden layers and units.

• Better to do **cheap evaluations** before expensive ones!

• The evaluation costs are **unknown** but they can be **recorded** and then **modeled** with an additional **Gaussian process**.

Expected Improvement per-second:

\[
\alpha(x) = \frac{\sigma(x)(\gamma(x)\Phi(\gamma(x))) + \phi(\gamma(x)))}{\exp\{\mu_{\text{log-time}}(x)\}}
\]

(Snoek *et al.*, 2012)
Cost-sensitive Bayesian Optimization

\[f(x) \]

\[EI(x) \]

\[\text{duration}(x) \]

\[EI(x) / s \]

\[EI(x) / \text{duration}(x) \]
Cost-sensitive Bayesian Optimization
Cost-sensitive Bayesian Optimization

\[f(x) \]

\[EI(x) \]

\[\text{duration}(x) \]

\[EI(x) / s \]

\[EI(x) / \text{duration}(x) \]

22 / 56
Cost-sensitive Bayesian Optimization

Deep neural network on the CIFAR dataset (Snoek et al., 2012)
Several Objectives and Constraints

Optimal design of **hardware accelerator** for neural network predictions.

- **Goals:**
 - Minimize prediction error.
 - Minimize prediction time.

- **Constrained to:**
 - Chip area below a value.
 - Power consumption below a level.

Challenges:
- Complicated constraints.
- Conflictive objectives.
Several Objectives and Constraints

Optimal design of **hardware accelerator** for neural network predictions.

Goals:

- Minimize **prediction error**.
- Minimize **prediction time**.
Several Objectives and Constraints

Optimal design of **hardware accelerator** for neural network predictions.

Goals:
- Minimize **prediction error**.
- Minimize **prediction time**.

Constrained to:
- Chip area below a value.
- Power consumption below a level.
Several Objectives and Constraints

Optimal design of **hardware accelerator** for neural network predictions.

Goals:
- Minimize *prediction error*.
- Minimize *prediction time*.

Constrained to:
- **Chip area** below a value.
- **Power consumption** below a level.

Challenges:
- Complicated constraints.
- Conflictive objectives.
Several Objectives and Constraints

Optimal design of **hardware accelerator** for neural network predictions.

Goals:
- Minimize **prediction error**.
- Minimize **prediction time**.

Constrained to:
- Chip area below a value.
- Power consumption below a level.

Challenges:
- Complicated constraints.
- Conflictive objectives.
Constrained Multi-Objective Optimization
Constrained Multi-Objective Optimization

Objective 1

Objective 2

Pareto Set (Input space)
Constrained Multi-Objective Optimization

Pareto Set (Input space)

Pareto Frontier (value space)

Objective 1

Objective 2

Values for Domain Points

Values for Optimal Points

Pareto Points
Constrained Multi-Objective Optimization

Objective 1

Objective 2

Constraint 1

Pareto Set (Input space)

Pareto Frontier (value space)
Constrained Multi-Objective Optimization

Objective 1

Objective 2

Constraint 1

Pareto Set (Input space)

Pareto Frontier (value space)

Values for Domain Points

Values for Optimal Points
Constrained Multi-Objective Optimization

Pareto Set (Input space)

Pareto Frontier (value space)
Bayesian Optimization Methods

Additional challenges when dealing with several black-boxes.
Bayesian Optimization Methods

Additional challenges when dealing with several black-boxes.

- Simple approach: evaluate all the objectives and constraints at the same input location. Expected to be sub-optimal.
Bayesian Optimization Methods

Additional challenges when dealing with several black-boxes.

- Simple approach: evaluate all the objectives and constraints at the same input location. Expected to be sub-optimal.

- Advanced approach: make intelligent decisions about what black-box to evaluate next and on which location.
Bayesian Optimization Methods

Additional challenges when dealing with several black-boxes.

- Simple approach: evaluate all the objectives and constraints at the same input location. Expected to be sub-optimal.

- Advanced approach: make intelligent decisions about what black-box to evaluate next and on which location.
Bayesian Optimization Methods

Additional challenges when dealing with several black-boxes.

• Simple approach: evaluate all the objectives and constraints at the same input location. Expected to be sub-optimal.

• Advanced approach: make intelligent decisions about what black-box to evaluate next and on which location.

Coupled evaluations

Decoupled evaluations
Information-based Approach

The Pareto set X^\star in the feasible space is a random variable!
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the **entropy** of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable! Information is measured by the entropy of $p(\mathcal{X}^*|D_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a **random variable**!

Information is measured by the **entropy** of $p(\mathcal{X}^*|D_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.

Actual Objectives and Constraints

Posterior of each Objective and Constraint

Optimized Samples Drawn from the Posterior
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|D_N)$.

- Actual Objectives and Constraints
- Posterior of each Objective and Constraint
- Optimized Samples Drawn from the Posterior
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a **random variable**!

Information is measured by the **entropy** of $p(\mathcal{X}^* | D_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable! Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable! Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.

The acquisition function is

$$\alpha(x) = H[\mathcal{X}^*|\mathcal{D}_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|\mathcal{D}_t \cup \{x, y\}] \right] |\mathcal{D}_t, x]$$ (1)
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a **random variable**!

Information is measured by the **entropy** of $p(\mathcal{X}^*|\mathcal{D}_N)$.

The acquisition function is

\[
\alpha(x) = H[\mathcal{X}^*|\mathcal{D}_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|\mathcal{D}_t \cup \{x, y\}] \right]_{\mathcal{D}_t, x} \tag{1}
\]
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|D_N)$.

The acquisition function is

$$\alpha(x) = H[\mathcal{X}^*|D_t] - \mathbb{E}_y H[\mathcal{X}^*|D_t \cup \{x, y\}] | D_t, x]$$

(1)
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable! Information is measured by the entropy of $p(\mathcal{X}^*|\mathcal{D}_N)$.

The acquisition function is

$$\alpha(x) = H[\mathcal{X}^*|\mathcal{D}_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|\mathcal{D}_t \cup \{x, y\}] | \mathcal{D}_t, x \right]$$ \hspace{1cm} (1)
Information-based Approach

The Pareto set \mathcal{X}^* in the feasible space is a random variable!

Information is measured by the entropy of $p(\mathcal{X}^*|D_N)$.

The acquisition function is

$$\alpha(x) = H[\mathcal{X}^*|D_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|D_t \cup \{x, y\} | D_t, x] \right]$$

(1)

How much we know about \mathcal{X}^* now.

How much we will know about \mathcal{X}^* after collecting y at x.

Computing (1) is very difficult in practice!
Predictive Entropy Search (PES)

We swap y and x^* to obtain a reformulation of the acquisition function.
Predictive Entropy Search (PES)

We swap y and \mathcal{X}^* to obtain a reformulation of the acquisition function.

$$H[\mathcal{X}^*|\mathcal{D}_t] - \mathbb{E}_y[H[\mathcal{X}^*|\mathcal{D}_t \cup \{x, y\}]|\mathcal{D}_t, x] \equiv \text{MI}(y, \mathcal{X}^*)$$ (ESMOC)
Predictive Entropy Search (PES)

We swap y and \mathcal{x}^* to obtain a reformulation of the acquisition function.

$$H[\mathcal{x}^*|\mathcal{D}_t] - \mathbb{E}_y\left[H[\mathcal{x}^*|\mathcal{D}_t \cup \{x, y\}]|\mathcal{D}_t, x\right] \equiv \text{MI}(y, \mathcal{x}^*) \quad (\text{ESMOC})$$

$$H[y|\mathcal{D}_t, x] - \mathbb{E}_{\mathcal{x}^*}\left[H[y|\mathcal{D}_t, x, \mathcal{x}^*]|\mathcal{D}_t, x\right] \equiv \text{MI}(\mathcal{x}^*, y) \quad (\text{PESMOC})$$
Predictive Entropy Search (PES)

We swap y and x^* to obtain a reformulation of the acquisition function.

\[
H[x^*|D_t] - \mathbb{E}_y\left[H[x^*|D_t \cup \{x, y\}]|D_t, x\right] \equiv \text{MI}(y, x^*) \quad \text{(ESMOC)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{x^*}\left[H[y|D_t, x, x^*]|D_t, x\right] \equiv \text{MI}(x^*, y) \quad \text{(PESMOC)}
\]
Predictive Entropy Search (PES)

We swap y and \mathcal{X}^* to obtain a reformulation of the acquisition function.

\[
\begin{align*}
H[\mathcal{X}^* | \mathcal{D}_t] - \mathbb{E}_y \left[H[\mathcal{X}^* | \mathcal{D}_t \cup \{x, y\}] \right] | \mathcal{D}_t, x] & \equiv \text{MI}(y, \mathcal{X}^*) \quad \text{(ESMOC)} \\
H[y | \mathcal{D}_t, x] - \mathbb{E}_{\mathcal{X}^*} \left[H[y | \mathcal{D}_t, x, \mathcal{X}^*] \right] | \mathcal{D}_t, x] & \equiv \text{MI}(\mathcal{X}^*, y) \quad \text{(PESMOC)}
\end{align*}
\]
Predictive Entropy Search (PES)

We swap y and \hat{x}^* to obtain a reformulation of the acquisition function.

\[
H[\hat{x}^*|D_t] - \mathbb{E}_y[H[\hat{x}^*|D_t \cup \{x, y\}]|D_t, x] \equiv \text{MI}(y, \hat{x}^*) \quad (\text{ESMOC})
\]

\[
H[y|D_t, x] - \mathbb{E}_{\hat{x}^*}[H[y|D_t, x, \hat{x}^*]|D_t, x] \equiv \text{MI}(\hat{x}^*, y) \quad (\text{PESMOC})
\]
Predictive Entropy Search (PES)

We swap y and x^* to obtain a reformulation of the acquisition function.

\[
H[x^* | D_t] - E_y[H[x^* | D_t \cup \{x, y\}] | D_t, x] \equiv \text{MI}(y, x^*) \quad (\text{ESMOC})
\]

\[
H[y | D_t, x] - E_{x^*}[H[y | D_t, x, x^*] | D_t, x] \equiv \text{MI}(x^*, y) \quad (\text{PESMOC})
\]
Predictive Entropy Search (PES)

We swap y and \mathcal{X}^* to obtain a reformulation of the acquisition function.

$$H[\mathcal{X}^*|D_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|D_t \cup \{x, y\}] | D_t, x \right] \equiv \text{MI}(y, \mathcal{X}^*) \quad \text{(ESMOC)}$$

$$H[y|D_t, x] - \mathbb{E}_{\mathcal{X}^*} \left[H[y|D_t, x, \mathcal{X}^*] | D_t, x \right] \equiv \text{MI}(\mathcal{X}^*, y) \quad \text{(PESMOC)}$$

Gaussian distribution
Predictive Entropy Search (PES)

We **swap** \(y \) and \(x^* \) to obtain a reformulation of the acquisition function.

\[
H[x^*|\mathcal{D}_t] - \mathbb{E}_y[H[x^*|\mathcal{D}_t \cup \{x, y\}]|\mathcal{D}_t, x] \equiv \text{MI}(y, x^*) \quad \text{(ESMOC)}
\]

\[
H[y|\mathcal{D}_t, x] - \mathbb{E}_{x^*}[H[y|\mathcal{D}_t, x, x^*]|\mathcal{D}_t, x] \equiv \text{MI}(x^*, y) \quad \text{(PESMOC)}
\]

Gaussian distribution

Approximated by sampling from \(p(x^*|\mathcal{D}_t) \)
Predictive Entropy Search (PES)

We swap \(y \) and \(\mathcal{X}^* \) to obtain a reformulation of the acquisition function.

\[
H[\mathcal{X}^*|D_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|D_t \cup \{x, y\}] \right] \equiv \text{MI}(y, \mathcal{X}^*) \quad \text{(ESMOC)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{\mathcal{X}^*} \left[H[y|D_t, x, \mathcal{X}^*] \right] \equiv \text{MI}(\mathcal{X}^*, y) \quad \text{(PESMOC)}
\]

Gaussian distribution

Approximated by sampling from \(p(\mathcal{X}^*|D_t) \)
Predictive Entropy Search (PES)

We swap y and \mathcal{X}^* to obtain a reformulation of the acquisition function.

\[H[\mathcal{X}^*|D_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|D_t \cup \{x, y\}] | D_t, x \right] \equiv \text{MI}(y, \mathcal{X}^*) \quad \text{(ESMOC)} \]

\[H[y|D_t, x] - \mathbb{E}_{\mathcal{X}^*} \left[H[y|D_t, x, \mathcal{X}^*] | D_t, x \right] \equiv \text{MI}(\mathcal{X}^*, y) \quad \text{(PESMOC)} \]

Factorized Gaussian approximation with expectation propagation. \mathcal{X}^* dominates any other point in \mathcal{X}.

(Minka, 2001)
Predictive Entropy Search (PES)

We swap y and χ^* to obtain a reformulation of the acquisition function.

\[
\begin{align*}
H[\chi^*|D_t] - E_Y[H[\chi^*|D_t \cup \{x, y\}]|D_t, x] &\equiv \text{MI}(y, \chi^*) \quad \text{(ESMOC)} \\
H[y|D_t, x] - E_{\chi^*}[H[y|D_t, x, \chi^*]|D_t, x] &\equiv \text{MI}(\chi^*, y) \quad \text{(PESMOC)}
\end{align*}
\]

\[
\alpha(x) \approx \sum_{c=1}^{C} \log v_{c}^{PD}(x) - \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{c=1}^{C} \log v_{c}^{CPD}(x|\chi_{(m)}^*) \right) + \sum_{k=1}^{K} \log v_{k}^{PD}(x) - \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{k=1}^{K} \log v_{k}^{CPD}(x|\chi_{(m)}^*) \right)
\]

(Minka, 2001)
Predictive Entropy Search (PES)

We swap y and \mathcal{X}^* to obtain a reformulation of the acquisition function.

\[
H[\mathcal{X}^*|D_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|D_t \cup \{x, y\}] | D_t, x \right] \equiv \text{MI}(y, \mathcal{X}^*) \quad \text{(ESMOC)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{\mathcal{X}^*} \left[H[y|D_t, x, \mathcal{X}^*] | D_t, x \right] \equiv \text{MI}(\mathcal{X}^*, y) \quad \text{(PESMOC)}
\]

\[
\alpha(x) \approx \sum_{c=1}^{C} \log v_c^{PD}(x) - \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{c=1}^{C} \log v_c^{CPD}(x|\mathcal{X}^*_{(m)}) \right) + \sum_{k=1}^{K} \log v_k^{PD}(x) - \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{k=1}^{K} \log v_k^{CPD}(x|\mathcal{X}^*_{(m)}) \right) = \sum_{i=1}^{C+K} \alpha_i(x)
\]

(Minka, 2001)
Predictive Entropy Search (PES)

We swap \(y \) and \(\mathcal{X}^* \) to obtain a reformulation of the acquisition function.

\[
\begin{align*}
H[\mathcal{X}^*|D_t] - \mathbb{E}_y \left[H[\mathcal{X}^*|D_t \cup \{x, y\}] | D_t, x \right] &\equiv \text{MI}(y, \mathcal{X}^*) \quad \text{(ESMOC)} \\
H[y|D_t, x] - \mathbb{E}_{\mathcal{X}^*} \left[H[y|D_t, x, \mathcal{X}^*] | D_t, x \right] &\equiv \text{MI}(\mathcal{X}^*, y) \quad \text{(PESMOC)}
\end{align*}
\]

\(\alpha(x) \approx \sum_{c=1}^{C} \log u_c^{PD}(x) - \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{c=1}^{C} \log u_c^{CPD}(x|\mathcal{X}^*_m) \right) + \\
\sum_{k=1}^{K} \log u_k^{PD}(x) - \frac{1}{M} \sum_{m=1}^{M} \left(\sum_{k=1}^{K} \log u_k^{CPD}(x|\mathcal{X}^*_m) \right) = \sum_{i=1}^{C+K} \alpha_i(x)
\]

(Minka, 2001)
Example of PES’ acquisition
Example of PES' acquisition

\[v_{1}^{PD}(x) \]

\[f_{1}(x) \]

\[v_{2}^{PD}(x) \]

\[f_{2}(x) \]
Example of PES’ acquisition
Example of PES’ acquisition

\[v_{1}^{PD}(x) \quad \text{Sample of } \mathcal{X}^* \quad v_{1}^{CPD}(x|\mathcal{X}_1^*) \]

\[f_1(x) \]

\[v_{2}^{PD}(x) \quad \text{Sample of } \mathcal{X}^* \quad v_{2}^{CPD}(x|\mathcal{X}_1^*) \]

\[f_2(x) \]
Example of PES’ acquisition
Example of PES’ acquisition

$v^{PD}_{1}(x)$ Sample of \mathcal{X}^* $v^{CPD}_{1}(x|\mathcal{X}^*)$ $\alpha_1(x)$

$v^{PD}_{2}(x)$ Sample of \mathcal{X}^* $v^{CPD}_{2}(x|\mathcal{X}^*)$ $\alpha_2(x)$
Finding a Fast and Accurate Neural Network

Average Pareto Front 100 Function Evaluations

Methods
- EHI
- ParEGO
- SMSeGO
- SUR
- PES decoupled

Coupled
Finding a Fast and Accurate Neural Network

Average Pareto Front 100 Function Evaluations

Methods
- EHI
- ParEGO
- SMSeleGO
- SUR

Black-boxes
- PES decoupled

Hernández-Lobato et al., 2016
Finding a Fast and Accurate Neural Network

Average Pareto Front 100 Function Evaluations

Average Pareto Front 200 Function Evaluations

(Hernández-Lobato et al., 2016)
Low energy hardware accelerator

![Pareto Fronts 600 Function Evaluations](image)

- **Methods**
 - PES coupled
 - PES decoupled
 - Random search
Low energy hardware accelerator

(Hernández-Lobato et al., 2016)
Parallel Bayesian Optimization

Traditional Bayesian optimization is **sequential**!
Parallel Bayesian Optimization

Traditional Bayesian optimization is **sequential**!
Parallel Bayesian Optimization

Traditional Bayesian optimization is **sequential**!

Computing clusters let us do **many things** at once!
Parallel Bayesian Optimization

Traditional Bayesian optimization is **sequential**!

Computing clusters let us do **many things** at once!
Parallel Bayesian Optimization

Traditional Bayesian optimization is **sequential**!

Computing clusters let us do **many things** at once!
Parallel Bayesian Optimization

Traditional Bayesian optimization is **sequential**!

Computing clusters let us do **many things** at once!

Parallel experiments should be highly informative but different!
Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

$$H[x^* | D_t] - \mathbb{E}_y \left[H[x^* | D_t \cup \{x_q, y_q\}_{q=1}^Q] | D_t, x \right] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}$$

(Shah and Ghahramani, 2015)
Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

\[
H[x^*|D_t] - E_y \left[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q] \right| D_t, x] \equiv MI(y, x^*) \quad \text{(Parallel ES)}
\]

\[
H[y|D_t, x] - E_{x^*} \left[H[y|D_t, x, x^*] \right| D_t, x] \equiv MI(x^*, y) \quad \text{(Parallel PES)}
\]

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

\[
H[x^*|D_t] - \mathbb{E}_y \left[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q] \right] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{x^*} \left[H[y|D_t, x, x^*] \right] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}
\]

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

\[
H[x^*|D_t] - \mathbb{E}_y \left[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q]|D_t, x\right] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{x^*} \left[H[y|D_t, x, x^*]|D_t, x\right] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}
\]

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

$$H[x^*|D_t] - \mathbb{E}_y \left[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q]|D_t, x\right] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}$$

$$H[y|D_t, x] - \mathbb{E}_{x^*} \left[H[y|D_t, x, x^*]|D_t, x\right] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}$$

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^{Q}$ to minimize the entropy of x^*.

\[
H[x^*|D_t] - \mathbb{E}_y\left[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^{Q}]|D_t, x\right] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{x^*}\left[H[y|D_t, x, x^*]|D_t, x\right] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}
\]

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

$$H[x^*|D_t] - \mathbb{E}_y H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q]|D_t, x] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}$$

$$H[y|D_t, x] - \mathbb{E}_{x^*} H[y|D_t, x, x^*]|D_t, x] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}$$

(Sah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^{Q}$ to minimize the entropy of x^*.

$$H[x^*|D_t] - \mathbb{E}_y[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^{Q}]|D_t, x] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}$$

$$H[y|D_t, x] - \mathbb{E}_{x^*}[H[y|D_t, x, x^*]|D_t, x] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}$$

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

\[
H[x^*|D_t] - \mathbb{E}_y H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q | D_t, x] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}
\]

\[
H[y|D_t, x] - \mathbb{E}_{x^*} H[y|D_t, x, x^* | D_t, x] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}
\]

Multi-variate Gaussian distribution

Approximated by sampling from $p(x^*|D_t)$

Multivariate Gaussian approximation with \textit{expectation propagation}

x^* is better than any other point in \mathcal{X}

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

$$H[x^*|D_t] - \mathbb{E}_y[H[x^*|D_t \cup \{x_q, y_q\}_{q=1}^Q]|D_t, x] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}$$

$$H[y|D_t, x] - \mathbb{E}_{x^*}[H[y|D_t, x, x^*]|D_t, x] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}$$

Multi-variate Gaussian distribution
Approximated by sampling from $p(x^*|D_t)$

Multivariate Gaussian approximation with **expectation propagation**
x^* is better than any other point in X

$$\alpha(S_t) = \log |V^{PD}(S_t)| - \frac{1}{M} \sum_{m=1}^{M} \log |V^{CPD}(S_t|x^*_{(m)})|$$

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search

Choose a set Q points $S_t = \{x_q\}_{q=1}^Q$ to minimize the entropy of x^*.

$$H[x^* | D_t] - \mathbb{E}_y \left[H[x^* | D_t \cup \{x_q, y_q\}_{q=1}^Q] | D_t, x \right] \equiv \text{MI}(y, x^*) \quad \text{(Parallel ES)}$$

$$H[y | D_t, x] - \mathbb{E}_{x^*} \left[H[y | D_t, x, x^*] | D_t, x \right] \equiv \text{MI}(x^*, y) \quad \text{(Parallel PES)}$$

Multi-variate Gaussian distribution
Approximated by sampling from $p(x^* | D_t)$
Multivariate Gaussian approximation with expectation propagation
x^* is better than any other point in \mathcal{X}

$$\alpha(S_t) = \log |V^{PD}(S_t)| - \frac{1}{M} \sum_{m=1}^M \log |V^{CPD}(S_t | x^*_{(m)})|$$

It is possible to compute the gradient of $\alpha(\cdot)$ w.r.t. each $x_q \in S_t$!

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search: Level Curves

(Shah and Ghahramani, 2015)
Parallel Predictive Entropy Search: Results

(Shah and Ghahramani, 2015)
Standard GP assume continuous input variables which makes BO with integer-valued or categorical challenging.
BO with Integer-valued and Categorical Variables

Standard GP assume continuous input variables which makes BO with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest integer or to the closest one-hot encoding.
Standard GP assume continuous input variables which makes BO with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest integer or to the closest one-hot encoding.
BO with Integer-valued and Categorical Variables

Standard GP assume continuous input variables which makes BO with integer-valued or categorical challenging.

A naive approach is to round the suggested value to the closest integer or to the closest one-hot encoding.

The BO algorithm may get stuck and may always perform the next evaluation at the same input location!
Bo with Integer-valued and Categorical Variables

Rounding inside of the wrapper works but makes the objective flat!

A modified GP covariance function accounts for this:

$$C_{\text{new}}(x_n, x_n') = C(T(x_n), T(x_n')); \theta$$

where $T(\cdot)$ does the rounding to the closest integer or one-hot encoding.
BO with Integer-valued and Categorical Variables

Rounding inside of the wrapper works but makes the objective flat!

A modified GP covariance function accounts for this:

$$C_{\text{new}}(x_n, x_{n'}) = C(T(x_n), T(x_{n'}); \theta)$$

where $T(\cdot)$ does the rounding to the closest integer or one-hot encoding.
BO with Integer-valued and Categorical Variables

Rounding inside of the wrapper works but makes the objective flat!

A modified GP covariance function accounts for this:

\[
C_{\text{new}}(x_n, x_n') = C(T(x_n), T(x_{n'}); \theta)
\]

where \(T(\cdot) \) does the rounding to the closest integer or one-hot encoding.
The GP predictive distribution is constant across all variables that lead to the same integer or one-hot-encoding.
The GP predictive distribution is constant across all variables that lead to the same integer or one-hot-encoding.

Similar results for categorical variables!
BO with Integer-valued and Categorical Variables

The GP predictive distribution is constant across all variables that lead to the same integer or one-hot-encoding.

Similar results for categorical variables!
BO with Integer-valued and Categorical Variables

Tuning the Hyper-parameters of a Gradient Boosting Ensemble

Log distance to the optimum value

Number of Function Evaluations

Methods
- Basic Approach
- SMAC
- OEN Optimization Only
- HyperOpt_TPE
- Proposed Approach

One continuous variable and two integer-valued variables.
Freeze-Thaw Bayesian Optimization

Common aspects of many machine learning algorithms:
Freeze-Thaw Bayesian Optimization

Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient descent.
Freeze-Thaw Bayesian Optimization

Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient descent.
2. There are hyper-parameters that impact the final performance.
Freeze-Thaw Bayesian Optimization

Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient descent.
2. There are hyper-parameters that impact the final performance.
Freeze-Thaw Bayesian Optimization

Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient descent.
2. There are hyper-parameters that impact the final performance.

Can we use partial training information and a model to determine which hyper-parameter configuration is going to be optimal?
Freeze-Thaw Bayesian Optimization

Common aspects of many machine learning algorithms:

1. A minimization step must be performed with, e.g., gradient descent.
2. There are hyper-parameters that impact the final performance.

Can we use partial training information and a model to determine which hyper-parameter configuration is going to be optimal?

Yes, that is precisely what Freeze-Thaw BO does!

(Swersky et al., 2014)
A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying functions of the form \(\exp\{-\lambda t\} \) for \(t, \lambda \geq 0 \).
A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying functions of the form $\exp\{-\lambda t\}$ for $t, \lambda \geq 0$.

The covariance between inputs t and t' is:

$$C(t, t') = \int_0^\infty e^{-\lambda t} e^{-\lambda t'} \psi(\lambda; \alpha, \beta) d\lambda = \frac{\beta^\alpha}{(t + t' + \beta)^\alpha}$$

where $\psi(\lambda; \alpha, \beta)$ is a gamma distribution with parameters α and β.
A GP Kernel for Training Curves

We want to specify a kernel that supports exponentially decaying functions of the form $\exp\{-\lambda t\}$ for $t, \lambda \geq 0$.

The covariance between inputs t and t' is:

$$C(t, t') = \int_0^\infty e^{-\lambda t} e^{-\lambda t'} \psi(\lambda; \alpha, \beta) d\lambda = \frac{\beta^{\alpha}}{(t + t' + \beta)^\alpha}$$

where $\psi(\lambda; \alpha, \beta)$ is a gamma distribution with parameters α and β.
Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values of each training curve.
Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values of each training curve.

Hierarchical generative model:

\[p(\{y_n\}_{n=1}^{N}|\{x_n\}_{n=1}^{N}) = \int \prod_{n=1}^{N} \mathcal{N}(y_n|f_n1, K_{t_n}) \mathcal{N}(f|m, K_x) df \]

where

\(x_n \equiv n \) configuration, \(y_n \equiv n \) observed curve,
\(f_n \equiv n \) asymptotic value, \(m \equiv \) prior asymptotic mean values,
\(K_{t_n} \equiv \) covariances for curve values, \(K_x \equiv \) cov. for asymptotic values
Inference on Asymptotic Values

A standard GP is used as the prior for the asymptotic values of each training curve.

Hierarchical generative model:

\[
p(\{y_n\}_{n=1}^N | \{x_n\}_{n=1}^N) = \int \left[\prod_{n=1}^N \mathcal{N}(y_n | f_n \mathbf{1}, K_{t_n}) \right] \mathcal{N}(f | \mathbf{m}, K_{x}) df
\]

where

\[\begin{align*}
 x_n &\equiv n \text{ configuration}, \\
 y_n &\equiv n \text{ observed curve}, \\
 f_n &\equiv n \text{ asymptotic value}, \\
 m &\equiv \text{prior asymptotic mean values}, \\
 K_{t_n} &\equiv \text{covariances for curve values}, \\
 K_{x} &\equiv \text{cov. for asymptotic values}
\end{align*}\]

The joint distribution of \(\{y\}_{n=1}^N \) and \(f \) is Gaussian and hence so is the predictive distribution \(p(f | \{y\}_{n=1}^N) \).
Inference on Asymptotic Values and BO

- \(p(f | \{ y_n \}_{n=1}^N, \{ x_n \}_{n=1}^N) \) determines asymptotic values.
- This distribution can be used to make intelligent decisions!
- Shall we train more one configuration or shall we start a new one?
- A combination of EI and ES is used as the acquisition function. (Swersky et al., 2014)
Inference on Asymptotic Values and BO

Bayesian Optimization:

- \(p(f|\{y_n\}_{n=1}^N, \{x_n\}_{n=1}^N) \) determines asymptotic values.
Inference on Asymptotic Values and BO

Bayesian Optimization:

- $p(f | \{y_n\}_{n=1}^N, \{x_n\}_{n=1}^N)$ determines asymptotic values.
- This distribution can be used to make intelligent decisions!
Inference on Asymptotic Values and BO

Bayesian Optimization:

- \(p(f|\{y_n\}_{n=1}^N, \{x_n\}_{n=1}^N) \) determines asymptotic values.
- This distribution can be used to make intelligent decisions!
- Shall we train more one configuration or shall we start a new one?
Inference on Asymptotic Values and BO

Bayesian Optimization:

- $p(f | \{y_n\}_{n=1}^N, \{x_n\}_{n=1}^N)$ determines asymptotic values.
- This distribution can be used to make intelligent decisions!
- Shall we train more one configuration or shall we start a new one?
- A combination of EI and ES is used as the acquisition function.

(Swersky et al., 2014)
Freeze-Thaw BO in practice
Freeze-Thaw BO in practice

(Swersky et al., 2014)
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $\mathcal{O}(n^3)$.

For large evaluation budgets one has to use approximations. Most successful approaches are based on inducing points: $X \equiv \text{Matrix of } m \ll n$ inducing or pseudo-inputs.

$u = f(X) \equiv \text{Inducing values / values of the process at } X$.

The predictive distribution for f^\star at a new point x^\star is:

$$p(f^\star|D_n) \approx \int p(f^\star|u) q(u) du = N(f^\star|\mu, \nu^2)$$

$$\mu = k_{x^\star, X}K^{-1}X, \nu^2 = \kappa_{x^\star, x^\star} - k_{x^\star, X}K^{-1}X(x^\star, X - S)K^{-1}Xk_{X, x^\star}$$

$q(u) = N(u|m, S)$ \equiv \text{Gaussian approximation to } p(u|D_n)$.

The computational cost is in $\mathcal{O}(nm^2)$!
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $O(n^3)$.
- For large evaluation budgets one has to use approximations.
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $O(n^3)$.
- For large evaluation budgets one has to use approximations.

Most successful approaches are based on inducing points:
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $O(n^3)$.
- For large evaluation budgets one has to use approximations.

Most successful approaches are based on inducing points:

\[\overline{X} \equiv \text{Matrix of } m \ll n \text{ inducing or pseudo-inputs.} \]

\[\mathbf{u} = f(\overline{X}) \equiv \text{Inducing values / values of the process at } \overline{X}. \]
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $O(n^3)$.
- For large evaluation budgets one has to use approximations.

Most successful approaches are based on inducing points:

\[\mathbf{X} \equiv \text{Matrix of } m \ll n \text{ inducing or pseudo-inputs.} \]
\[\mathbf{u} = f(\mathbf{X}) \equiv \text{Inducing values / values of the process at } \mathbf{X}. \]

The predictive distribution for f^* at a new point \mathbf{x}^* is:

\[p(f^* | \mathcal{D}_n) \approx \int p(f^* | \mathbf{u}) q(\mathbf{u}) d\mathbf{u} = \mathcal{N}(f^* | \mu, \nu^2) \]

\[\mu = k_{x^*, \mathbf{X}} K^{-1}_{\mathbf{X}, \mathbf{X}} \mathbf{m}, \quad \nu^2 = \kappa_{x^*, \mathbf{x}^*} - k_{x^*, \mathbf{X}} K^{-1}_{\mathbf{X}, \mathbf{X}} (K_{\mathbf{X}, \mathbf{X}} - \mathbf{S}) K^{-1}_{\mathbf{X}, \mathbf{X}} k_{\mathbf{X}, \mathbf{x}^*} \]
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $O(n^3)$.
- For large evaluation budgets one has to use approximations.

Most successful approaches are based on inducing points:

\[\bar{X} \equiv \text{Matrix of } m \ll n \text{ inducing or pseudo-inputs.} \]

\[u = f(\bar{X}) \equiv \text{Inducing values / values of the process at } \bar{X}. \]

The predictive distribution for f^* at a new point x^* is:

\[
p(f^*|D_n) \approx \int p(f^*|u)q(u)du = \mathcal{N}(f^*|\mu, \nu^2)
\]

\[
\mu = k_{x^*,\bar{X}}K_{\bar{X},\bar{X}}^{-1}m, \quad \nu^2 = \kappa_{x^*,x^*} - k_{x^*,\bar{X}}K_{\bar{X},\bar{X}}^{-1}(K_{\bar{X},\bar{X}} - S)K_{\bar{X},\bar{X}}^{-1}k_{\bar{X},x^*}
\]

\[
q(u) = \mathcal{N}(u|m, S) \equiv \text{Gaussian approximation to } p(u|D_n).
\]
Computational Cost of GPs and Other Models

- Exact inference with GP has cost in $O(n^3)$.
- For large evaluation budgets one has to use approximations.

Most successful approaches are based on inducing points:

$$\mathbf{X} \equiv \text{Matrix of } m \ll n \text{ inducing or pseudo-inputs.}$$

$$\mathbf{u} = f(\mathbf{X}) \equiv \text{Inducing values / values of the process at } \mathbf{X}.$$

The predictive distribution for f^* at a new point x^* is:

$$p(f^*|\mathcal{D}_n) \approx \int p(f^*|\mathbf{u})q(\mathbf{u})d\mathbf{u} = \mathcal{N}(f^*|\mu, \nu^2)$$

$$\mu = k_{x^*,\mathbf{x}}K_{\mathbf{x},\mathbf{x}}^{-1}\mathbf{m}, \quad \nu^2 = \kappa_{x^*,x^*} - k_{x^*,\mathbf{x}}K_{\mathbf{x},\mathbf{x}}^{-1}(K_{\mathbf{x},\mathbf{x}} - \mathbf{S})K_{\mathbf{x},\mathbf{x}}^{-1}k_{\mathbf{x},x^*}$$

$$q(\mathbf{u}) = \mathcal{N}(\mathbf{u}|\mathbf{m}, \mathbf{S}) \equiv \text{Gaussian approximation to } p(\mathbf{u}|\mathcal{D}_n).$$

The computational cost is in $O(nm^2)$!
Sparse GP based on Inducing Points

The approximate predictive distribution can be sub-optimal if the inducing points are not chosen carefully.
Sparse GP based on Inducing Points

The approximate predictive distribution can be sub-optimal if the inducing points are not chosen carefully.

Exact GP

SPGP
Sparse GP based on Inducing Points

The approximate predictive distribution can be sub-optimal if the inducing points are not chosen carefully.

- Too small variance at the pseudo-inputs.
- Too big variance in between and away from pseudo-inputs.

(Shahriari et al., 2016)
Optimizing the Inducing Points

Two approaches:

• EP: optimize the marginal likelihood of an approximate GP model.
• VI: maximize fidelity to the original exact GP.

• EP: less local optima and easier to optimize, also less accurate.
• VI: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)
Optimizing the Inducing Points

Two approaches:

- EP: optimize the marginal likelihood of an approximate GP model.
- VI: maximize fidelity to the original exact GP.
Optimizing the Inducing Points

Two approaches:

- **EP**: optimize the marginal likelihood of an approximate GP model.
- **VI**: maximize fidelity to the original exact GP.

(Bui et al., 2017) (Bauer et al., 2016)
Optimizing the Inducing Points

Two approaches:

- **EP**: optimize the marginal likelihood of an approximate GP model.
- **VI**: maximize fidelity to the original exact GP.

- EP: less local optima and easier to optimize, also less accurate.
- VI: more accurate, more local optima, more difficult to optimize.

(Bui et al., 2017) (Bauer et al., 2016)
Other Models: Random Forest

Ensemble method where the predictors are random regression trees trained on random subsamples of the data.
Other Models: Random Forest

Ensemble method where the predictors are random regression trees trained on random subsamples of the data.

- Trees are grown on different bootstrap samples of the data.
Other Models: Random Forest

Ensemble method where the predictors are random regression trees trained on random subsamples of the data.

- Trees are grown on different bootstrap samples of the data.
- At each node the best splitter is chosen randomly.
Other Models: Random Forest

Ensemble method where the predictors are random regression trees trained on random subsamples of the data.

- Trees are grown on different bootstrap samples of the data.
- At each node the best splitter is chosen randomly.
- Leaf nodes predict the average value of the points reaching that node.
Other Models: Random Forest

Ensemble method where the predictors are random regression trees trained on random subsamples of the data.

- Trees are grown on different bootstrap samples of the data.
- At each node the best splitter is chosen randomly.
- Leaf nodes predict the average value of the points reaching that node.
- This guarantees that each tree is slightly different.
Other Models: Random Forest

Ensemble method where the predictors are random regression trees trained on random subsamples of the data.

- Trees are grown on different bootstrap samples of the data.
- At each node the best splitter is chosen randomly.
- Leaf nodes predict the average value of the points reaching that node.
- This guarantees that each tree is slightly different.

Very cheap to compute and massively parallelizable!
Random Forest: Predictive Distribution

The predictive distribution is a Gaussian with the empirical average and empirical variance.
Random Forest: Predictive Distribution

\[p(f^* | \mathcal{D}_n) = \mathcal{N}(f^* | \mu, \nu^2) \]

(Hutter et al., 2011)
Random Forest in Practice

(Shahriari et al., 2016)
Random Forest in Practice

(Shahriari et al., 2016)

- Allows for a lot of evaluations (good when the objective is cheap).
Random Forest in Practice

(Shahriari et al., 2016)

- Allows for a lot of evaluations (good when the objective is cheap).
- Too confident intervals in far away from the data regions.
Random Forest in Practice

(Shahriari et al., 2016)

- Allows for a lot of evaluations (good when the objective is cheap).
- Too confident intervals in far away from the data regions.
- Conflictive predictions can cause the variance to be too high.
Random Forest in Practice

(Shahriari et al., 2016)

- Allows for a lot of evaluations (good when the objective is cheap).
- Too confident intervals in far away from the data regions.
- Conflictive predictions can cause the variance to be too high.
- Discontinuous: Difficult to optimize the acquisition function.
Random Forest in Practice

- Allows for a lot of evaluations (good when the objective is cheap).
- Too confident intervals in far away from the data regions.
- Conflictive predictions can cause the variance to be too high.
- Discontinuous: Difficult to optimize the acquisition function.
- No parameters to tune.

(Shahriari et al., 2016)
Other Models: Bayesian Neural Networks

- Neural networks scale well to the training data (linear cost).

\[h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right) \]

\[f(x) = \sum_{j=1}^{H} v_j h_j(x) \]
Other Models: Bayesian Neural Networks

- Neural networks scale well to the training data (linear cost).
- Trained very fast on GPUs.

\[h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right) \]

\[f(x) = \sum_{j=1}^{H} v_j h_j(x) \]
Other Models: Bayesian Neural Networks

- Neural networks scale well to the training data (linear cost).
- Trained very fast on GPUs.
- State of the art prediction results.

\[h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right) \]

\[f(x) = \sum_{j=1}^{H} v_j h_j(x) \]
Other Models: Bayesian Neural Networks

- Neural networks scale well to the training data (linear cost).
- Trained very fast on GPUs.
- State of the art prediction results.

They are an alternative to GPs to allow for a large number observations!

\[
h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right)
\]

\[
f(x) = \sum_{j=1}^{H} v_j h_j(x)
\]
Other Models: Bayesian Neural Networks

- Neural networks scale well to the training data (linear cost).
- Trained very fast on GPUs.
- State of the art prediction results.

They are an alternative to GPs to allow for a large number observations!

The posterior distribution of the networks weights W is intractable!

$$h_j(x) = \tanh \left(\sum_{i=1}^{I} x_i w_{ji} \right)$$

$$f(x) = \sum_{j=1}^{H} v_j h_j(x)$$
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

- Markov Chain Monte Carlo methods.
- Variational Inference.
- Expectation Propagation.
- Reinterpretations of dropout.
- Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and scalability! Still a lot of research going on!
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

- Markov Chain Monte Carlo methods.
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

- Markov Chain Monte Carlo methods.
- Variational Inference.
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

- Markov Chain Monte Carlo methods.
- Variational Inference.
- Expectation Propagation.
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

- Markov Chain Monte Carlo methods.
- Variational Inference.
- Expectation Propagation.
- Reinterpretations of dropout.

Trade-off between accuracy of the predictive distribution and scalability! Still a lot of research going on!
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

• Markov Chain Monte Carlo methods.
• Variational Inference.
• Expectation Propagation.
• Reinterpretations of dropout.
• Point estimates and Bayesian linear-models in the last layer.
Bayesian Neural Networks: Predictive Distribution

Several techniques considered to approximate the predictive distribution:

- Markov Chain Monte Carlo methods.
- Variational Inference.
- Expectation Propagation.
- Reinterpretations of dropout.
- Point estimates and Bayesian linear-models in the last layer.

Trade-off between accuracy of the predictive distribution and scalability! Still a lot of research going on!
Software for Bayesian Optimization

Many of the methods described are implemented into **Spearmint** using Python.

https://github.com/HIPS/Spearmint
Software for Bayesian Optimization

Many of the methods described are implemented into **Spearmint** using Python.

https://github.com/HIPS/Spearmint

spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
Software for Bayesian Optimization

Many of the methods described are implemented into Spearmint using Python.
https://github.com/HIPS/Spearmint

Spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
2. GP hyper-parameter sampling via slice sampling (MCMC).
Many of the methods described are implemented into **Spearmint** using Python.

https://github.com/HIPS/Spearmint

Spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
2. GP hyper-parameter sampling via slice sampling (MCMC).
3. Allows for non-stationary functions via betawarp.
Software for Bayesian Optimization

Many of the methods described are implemented into **Spearmint** using Python.
https://github.com/HIPS/Spearmint

Spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
2. GP hyper-parameter sampling via slice sampling (MCMC).
3. Allows for non-stationary functions via betawarp.
4. Supports ignoring variables in some objectives or constraints.
Software for Bayesian Optimization

Many of the methods described are implemented into Spearmint using Python.
https://github.com/HIPS/Spearmint

Spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
2. GP hyper-parameter sampling via slice sampling (MCMC).
3. Allows for non-stationary functions via betawarp.
4. Supports ignoring variables in some objectives or constraints.
5. Supports different schedulers including SLURM.
Software for Bayesian Optimization

Many of the methods described are implemented into **Spearmint** using Python.
https://github.com/HIPS/Spearmint

Spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
2. GP hyper-parameter sampling via slice sampling (MCMC).
3. Allows for non-stationary functions via betawarp.
4. Supports ignoring variables in some objectives or constraints.
5. Supports different schedulers including SLURM.
6. Stores all results (observations and suggestions) in a database.
Software for Bayesian Optimization

Many of the methods described are implemented into **Spearmint** using Python.
https://github.com/HIPS/Spearmint

Spearmint’s super-nice features:

1. Easy problem configuration (JSON file) and wrapper calling.
2. GP hyper-parameter sampling via slice sampling (MCMC).
3. Allows for non-stationary functions via betawarp.
4. Supports ignoring variables in some objectives or constraints.
5. Supports different schedulers including SLURM.
6. Stores all results (observations and suggestions) in a database.

Other tools: SMAC (Java), Hyperopt (Python), Bayesopt (C++), PyBO (Python), MOE (Python / C++).
Further Extensions and Open Issues

1 High-dimensionality: BO is restricted to problems of moderate dimension. However, many big problems have low effective dimensionality which can be exploited (Wang et al., 2013).
Further Extensions and Open Issues

1. **High-dimensionality**: BO is restricted to problems of moderate dimension. However, many big problems have low effective dimensionality which can be exploited (Wang et al., 2013).

2. Consider **dependencies** among objectives / tasks (Swersky et al., 2013) (Shah and Ghahramani, 2016). Most of the times the GPs are simply assumed to be independent, which is suboptimal.
Further Extensions and Open Issues

1. **High-dimensionality**: BO is restricted to problems of moderate dimension. However, many big problems have low effective dimensionality which can be exploited (Wang et al., 2013).

2. Consider **dependencies** among objectives / tasks (Swersky et al., 2013) (Shah and Ghahramani, 2016). Most of the times the GPs are simply assumed to be independent, which is suboptimal.

3. Most acquisition functions consider an evaluation **horizon equal to one**. We can do better by considering a particular evaluation budget and taking decisions accordingly (González et al., 2016).
Further Extensions and Open Issues

1. **High-dimensionality**: BO is restricted to problems of moderate dimension. However, many big problems have low effective dimensionality which can be exploited (Wang *et al.*, 2013).

2. Consider **dependencies** among objectives / tasks (Swersky *et al.*, 2013) (Shah and Ghahramani, 2016). Most of the times the GPs are simply assumed to be independent, which is suboptimal.

3. Most acquisition functions consider an evaluation **horizon equal to one**. We can do better by considering a particular evaluation budget and taking decisions accordingly (González *et al.*, 2016).

4. **Safe Bayesian Optimization**: Sometimes we should avoid evaluating the objective at particular input locations (system failure) where it falls below some critical value (Berkenkamp *et al.*, 2016).
Conclusions

Bayesian optimization:
Conclusions

Bayesian optimization:

1. Is a powerful tool that can be used to optimize black-box objectives that are very expensive to evaluate and noisy.
Conclusions

Bayesian optimization:

1. Is a **powerful tool** that can be used to optimize black-box objectives that are very expensive to evaluate and noisy.

2. Provides **significantly better results** than a random / uniform exploration of the input space.

Thank you very much!
Conclusions

Bayesian optimization:

1. Is a **powerful tool** that can be used to optimize black-box objectives that are very expensive to evaluate and noisy.

2. Provides **significantly better results** than a random / uniform exploration of the input space.

3. Can deal with complicated optimization problems with **several objectives and / or multiple constraints**.
Conclusions

Bayesian optimization:

1. Is a **powerful tool** that can be used to optimize black-box objectives that are very expensive to evaluate and noisy.

2. Provides **significantly better results** than a random / uniform exploration of the input space.

3. Can deal with complicated optimization problems with **several objectives and / or multiple constraints**.

Thank you very much!
References

References